

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 6199–6203

A $SiCl₄-ZnCl₂$ induced general, mild and efficient one-pot, three-component synthesis of b-amido ketone libraries

Tarek A. Salama,* Saad S. Elmorsy, Abdel-Galel M. Khalil and Mohamed A. Ismail

Chemistry Department, Faculty of Science, Mansoura University, 35516-Mansoura, Egypt

Received 3 May 2007; revised 12 June 2007; accepted 20 June 2007 Available online 27 June 2007

Abstract—A general, mild and efficient protocol for the synthesis of β -amido ketone libraries was achieved utilizing tetrachlorosilane and zinc chloride in dichloromethane at ambient temperature via a one-pot, three-component condensation of various aldehydes, ketones and nitriles.

 $© 2007 Elsevier Ltd. All rights reserved.$

b-Amido ketones are important building blocks and intermediates in synthesis, for example, they are impor-tant precursors of heterocycles^{[1](#page-3-0)} as well as of β -amino alcohols, which are common units in both natural and synthetic biologically or pharmacologically important compounds.[2](#page-3-0) Multicomponent coupling reactions[3](#page-3-0) (MCRs) are attractive for parallel synthesis as large arrays of compounds with diverse substitution patterns can be prepared in one-step, often in high yields, under mild conditions. MCRs are powerful tools in modern drug discovery and allow fast, automated and high throughput synthesis of diverse structural scaffolds required in the search of novel therapeutic molecules. Recently, a number of reports have described the synthesis of b-acetamido ketones through multicomponent condensation of aryl aldehydes, enolizable ketones, acetyl chloride and acetonitrile catalyzed by $CoCl₂$ ^{[4](#page-3-0)} Montmorillonite K-10 clay^{[5](#page-3-0)} or $SiO_2-H_2SO_4^6$ $SiO_2-H_2SO_4^6$ under thermal conditions or by using $ZrOCl₂·8H₂O⁷$ or BiCl₃ generated in situ from BiOCl and acetyl chloride[8](#page-3-0) at room temperature. Although, these protocols are valuable, they lack the generality to produce arrays of β -amido ketones as they are restricted to acetonitrile giving the corresponding β -acetamido ketones,^{[4–8](#page-3-0)} and only one example of a β -benzamido ketone was prepared by this method involving benzonitrile in a long time (36 h).[7](#page-3-0) To our knowledge, except for acetonitrile or

benzonitrile, no other nitriles have been used in such condensations. Therefore, the introduction of new and efficient methods for this multicomponent reaction are still required. Towards this goal, and in continuation of our investigations^{[9](#page-3-0)} on the development and applications of new in situ reagents derived from tetrachlorosilane $(TCS)^{10}$ $(TCS)^{10}$ $(TCS)^{10}$ in organic synthesis, we have developed an efficient, general and convenient protocol for the one-pot synthesis of β -amido ketones. The reaction proceeds via a three-component reaction of various aldehydes, ketones and nitriles including alkyl, aralkyl, aryl and α , β -unsaturated nitriles as well as cyano esters utilizing the inexpensive and readily available tetra $chlorosilane-zinc$ chloride reagent^{10e} in dichloromethane at room temperature without using acetyl chloride.

An equimolar mixture of benzaldehyde, acetophenone and acetonitrile in dichloromethane was allowed to react in the presence of TCS (4 equiv) and $ZnCl₂$ (2 equiv) at room temperature to furnish the corresponding β -acetamido ketone 4a in good yield ([Table 1,](#page-1-0) entry 1). In order to create a library of compounds, we have reacted various ketones, aldehydes, and nitriles to afford a diverse set of b-amido ketones ([Scheme 1](#page-1-0), [Table 1\)](#page-1-0).

As seen from the results in [Table 1](#page-1-0) and [Scheme 2,](#page-2-0) the reaction proved to be general and tolerated a variety of functional groups on the aromatic aldehydes, including chlorine, methyl and methoxy as well as sterically hindered aldehydes such as naphthaldehyde ([Table 1,](#page-1-0) entries 2–4 and 7). A unique example of heteroaryl as well as α , β -unsaturated aldehydes was introduced through the MCR of 3-formylchromone with acetophenone and

Keywords: Tetrachlorosilane; Zinc chloride; One-pot three-component synthesis; β -Amido ketones.

^{*} Corresponding author. Fax: $+2$ 050 2246781; e-mail: [tasalama@](mailto:tasalama@ yahoo.com) [yahoo.com](mailto:tasalama@ yahoo.com)

^{0040-4039/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.06.128

Entry	R ¹	R^2	R^3	R ⁴	Product	Time (h)	Yield ^a $(\%)$
1	Ph	Ph	H	Me	4a	8	71
$\mathfrak{2}$	$4-CIC_6H_4$	Ph	H	Me	4 _b	9	69
\mathfrak{Z}	$4-MeC6H4$	Ph	H	Me	4c	10	72
4	$4-MeOC6H4$	Ph	H	Me	4d	9	74
5	$4-MeC6H4$	$4-MeC6H4$	H	Me	4e	8	70
6	$4-MeOC6H4$	$4-MeC6H4$	H	Me	4f	11	73
$\overline{7}$	2-Naphthyl	Ph	H	Me	4g	10	66
8	2-Chromonyl	Ph	H	Me	5	13	62
9	$4-MeC_6H_4$	Ph	H	PhCH ₂	6a	11	65
10	$4-MeOC6H4$	Ph	H	PhCH ₂	6 _b	10	68
11	$4-MeC_6H_4$	$4-MeC_6H_4$	H	PhCH ₂	6c	13	66
12	$4-MeOC6H4$	$4-MeC6H4$	H_{\rm}	PhCH ₂	6d	12	67
13	$4-CIC6H4$	Ph	H	Ph	7a	$20\,$	60
14	$4-MeC_6H_4$	Ph	H	Ph	7 _b	18	61
15	$4-MeOC6H4$	Ph	H	Ph	7с	17	63
16	Ph	$4-MeC_6H_4$	H	Ph	7d	18	61
17	4-MeOC ₆ H ₄	$4-MeC6H4$	H	Ph	7e	16	62
18	$4-MeC_6H_4$	Ph	H	$CH2=CH-$	8a	12	66
19	$4-MeOC6H4$	Ph	H	$CH2=CH-$	8 _b	11	64
20	Ph	$4-MeC6H4$	H	$CH2=CH-$	8c	11	67
21	$4-MeC6H4$	$4-MeC_6H_4$	H	$CH2=CH-$	8d	12	65
22	4-MeOC ₆ H ₄	$4-MeC6H4$	H	$CH2=CH-$	8e	10	68
23	$4-MeC6H4$	Ph	H	CH ₂ COOEt	9a	11	70
24	$4-MeOC6H4$	Ph	H	CH ₂ COOEt	9 b	10	72
25	$4-MeC_6H_4$	$4-MeC_6H_4$	H	CH ₂ COOH	9c	11	71
26	$4-MeOC6H4$	$4-MeC_6H_4$	H	CH ₂ COOH	9d	10	69
27	$4-MeC6H4$	1-Tetralone		Me	10	12	65
28	2-Naphthyl	1-Tetralone			11	18	87
29	$4-MeOC6H4$	1-Benzosuberone		Me	12	13	67

Table 1. $SiCl₄-ZnCl₂$ induced one-pot, three-component reaction of aldehydes with ketones and nitriles giving the corresponding β -amido ketones

^a Isolated yields after column chromatography except for product 11, purified by recrystallization from EtOH.

acetonitrile, which gave β -acetamido ketone 5 in moderate yield (Table 1, entry 8). It is appeared that the reaction with α -substituted enolisable ketones (entries 27 and 29) proceeds in a diastereoselective manner, however, we could not state which diastereoisomer is preferred at moment. Further investigations on the diastereoselectivity of the process are currently in progress in our lab. With respect to the ketones, the present reaction tolerated aryl methyl ketones as well as carbocyclic ketones such as 1-tetralone and 1-benzosuberone (Table 1, entries 27 and 29) giving the respective β -amido ketones in moderate yields. As with aldehydes, the present procedure works well with sterically hindered ketones (Table 1, entries 27 and 29). However, using two sterically hindered components in this reaction gave only the corresponding enone. Thus, the MCR of 1-tetralone with 2-naphthaldehyde and acetonitrile gave exclusively 2-naphthylidene-1-tetralone 11 even when using an excess of TCS and $ZnCl₂$ for a longer reaction time (up to 8 equiv, Table 1, entry 28). The reaction was successful with a variety of nitriles. Thus, besides acetonitrile, the MCRs of aldehydes and ketones with aralkyl, aryl and α , β -unsaturated nitriles as well as with cyanoesters were studied. Phenylacetonitrile, benzonitrile, acrylonitrile and ethyl cyanoacetate were chosen as representative examples. In all the cases studied, the reaction proceeded smoothly under the above conditions giving the corresponding b-amido ketones, typically within 12 h, except for the reaction with benzonitrile where reaction times of up to 20 h were required, which might be attributed to steric factors as well as to the low nucleophilicity of benzonitrile (Table 1, entries 13–17).

To optimize the reaction conditions, we examined the reaction in various solvents. CH_2Cl_2 was found to be the most effective solvent while donor solvents such as diethyl ether completely inhibited the reaction. $SnCl₂$ as a Lewis acid was examined and similar results were obtained but it was less effective than $ZnCl₂$. It is noteworthy to mention that no reaction was observed in the absence of either the Lewis acid or SiCl4.

A reasonable mechanism for the present reaction may proceed as depicted in Scheme $\hat{3}$ in an aldol-type^{[11](#page-3-0)} way followed by amidoalkylation.^{[12](#page-3-0)} The addition of nucleophiles to the ketones is promoted by co-ordination of a Lewis acid to the carbonyl group enhancing the electrophilicity of this moiety.^{[13](#page-3-0)} On the other hand, use of $ZnCl₂$ as a radical initiator as well as a chelating agent has been documented.^{[14](#page-3-0)} Therefore, a reaction pathway that involves activation of the ketones by SiCl4

Scheme 2.

Scheme 3.

is reasonable in analogy to the $Me₃SiX$ assisted addition.[15](#page-3-0) We presume that the mechanism is formally analogous to the Lewis acid-catalyzed addition of silyl enol ethers to carbonyl compounds. Indeed, the reaction may proceed via the prior complexation of the –CO– with $ZnCl₂$ according to the well established Zim-merman–Traxler chair-like transition state model^{[16](#page-3-0)} to afford the corresponding silyl zinc chelate A ,^{[17](#page-3-0)} which is converted to silyl zinc chelate B. On the other hand, as with $SnCl₄^{18a} SiCl₄ may co-ordinate with nitriles acti$ vating addition of the nitrile to the silyl zinc chelate B in a manner similar to the Ritter reaction^{[19](#page-3-0)} giving eventually the desired β -amido ketone after aqueous workup.

According to the proposed mechanism, the reaction may be viewed as a new route to β -amido ketones via a mild tandem aldol-amidoalkylation reaction sequence. It is noteworthy to mention that only a few examples of β -amido ketones of type 6 and 7 have previously been prepared via multi-step routes under harsh conditions.[18](#page-3-0)

In conclusion, we have reported $SiCl₄-ZnCl₂$ as a readily available and inexpensive reagent for the efficient

one-pot, three-component synthesis of β -amido ketone libraries through a tandem aldol-amidoalkylation reaction under very mild conditions.20 The present protocol is convenient and applicable to a wide variety of aldehydes, ketones and nitriles, which should make it amenable to high throughput synthesis of combinatorial libraries for potential drug development.

Acknowledgement

We thank Dr. A. F. Abdel-Razik (NRC, Cairo) for mass spectroscopic assistance.

References and notes

- 1. (a) Nishio, T.; Ori, M. Helv. Chim. Acta 2001, 84, 2347– 2354; (b) Ori, M.; Nishio, T. Heterocycles 2000, 52, 111– 116.
- 2. (a) Barluenga, J.; Viado, A. L.; Aguilar, E.; Fustero, S.; Olano, B. J. Org. Chem. 1993, 58, 5972–5975; (b) Godfrey, A. G.; Brooks, D. A.; Hay, L. A.; Peters, M.; McCarthy, J. R.; Mitchell, D. J. Org. Chem. 2003, 68, 2623–2632; (c) Casimir, J. R.; Turetta, C.; Ettouati, L.; Paris, J. Tetrahedron Lett. **1995**, 36, 4797-4800; (d) Kobinata, K.; Uramoto, M.; Nishii, M.; Kusakabi, H.; Nakamura, J.; Isono, K. Agric. Biol. Chem. 1980, 44, 1709–1711.
- 3. For a review, see: (a) Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168–3210; (b) Thomson, L. A.; Ellman, J. A. Chem. Rev. 1996, 96, 555–600.
- 4. (a) Bhatia, B.; Reddy, M. M.; Iqbal, J. J. Chem. Soc., Chem. Commun. 1994, 713–714; (b) Reddy, M. M.; Bhatia, B.; Iqbal, J. Tetrahedron Lett. 1995, 36, 4877–4880; (c) Mukhopadhyay, M.; Bhatia, B.; Iqbal, J. Tetrahedron Lett. 1997, 38, 1083–1086; (d) Rao, I. N.; Prabhakaran, E. N.; Das, S. K.; Iqbal, J. J. Org. Chem. 2003, 68, 4079–4082.
- 5. Bahulayan, D.; Das, S. K.; Iqbal, J. J. Org. Chem. 2003, 68, 5735–5738.
- 6. Khodaei, M. M.; Khosropour, A. R.; Fattahpour, P. Tetrahedron Lett. 2005, 46, 2105–2108.
- 7. Ghosh, R.; Maiti, S.; Chakraborty, A.; Chakraborty, S.; Mukherjee, A. K. Tetrahedron 2006, 62, 4059–4064.
- 8. Ghosh, R.; Maiti, S.; Chakraborty, A. Synlett 2005, 115– 118.
- 9. (a) Salama, T. A.; Elmorsy, S. S.; Khalil, A. M. Tetrahedron Lett. 2007, 48, 4395-4398; (b) Salama, T. A.; Elmorsy, S. S.; Khalil, A. M.; Girges, M. M.; El-Ahl, A. S. Synth. Commun. 2007, 37, 1313–1319; (c) Salama, T. A.; El-Ahl, A. S.; Khalil, A. M.; Girges, M. M.; Lackner, B.; Steindl, C.; Elmorsy, S. S. Monatsh. Chem. 2003, 134, 1241–1252; (d) Elmorsy, S. S.; Khalil, A. M.; Girges, M. M.; Salama, T. A. Tetrahedron Lett. 1997, 38, 1071–1074; (e) Elmorsy, S. S.; Khalil, A. M.; Girges, M. M.; Salama, T. A. J. Chem. Res. (S) 1997, 231–232.
- 10. (a) Denmark, S. E.; Fan, Y. J. Org. Chem. 2005, 70, 9667– 9676; (b) Denmark, S. E.; Beutner, G. L.; Wynn, T.; Eastgate, M. D. J. Am. Chem. Soc. 2005, 127, 3774–3789; (c) Acocella, M. R.; De Rosa, M.; Massa, A.; Palombi, L.; Villano, R.; Scettri, A. Tetrahedron 2005, 61, 4091–4097; (d) Tokuoka, E.; Katani, S.; Matsunogo, H.; Ishizuka, T.; Hashimoto, S.; Nakajima, M. Tetrahedron: Asymmetry 2005, 16, 2391–2392; (e) Elmorsy, S. S.; Badawy, D. S.; Khatab, T. K. Phosphorus, Sulfur, Silicon 2005, 80, 109-116; (f) Kim, B. J.; Mattseon, D. S. Angew. Chem., Int. Ed. 2004, 43, 3056–3058; (g) Denmark, S. E.; Heemstra, J. R., Jr. Org. Lett. 2003, 5, 2303–2306; (h) Matteson, D. S.;

Kim, G. Y. Org. Lett. 2002, 4, 2153–2155; (i) Nakajma, M.; Saito, M.; Uemura, M.; Hashimoto, S. Tetrahedron Lett. 2002, 43, 8827-8829; (j) Gupta, H. K.; Reginato, N.; Ogini, F. O.; Brydges, S.; McGlinchey, M. J. Can. J. Chem. 2002, 80, 1546–1554; (k) Denmark, S. E.; Wynn, T.; Jellerichs, B. G. Angew. Chem., Int. Ed. 2001, 40, 2255– 2256; (l) Zoorob, H. H.; Abou-Elzahab, M. M.; Abdel-Mogib, M.; Ismail, M. A. Tetrahedron 1996, 52, 10147– 10158.

- 11. (a) Xu, L.-W.; Xia, C.-G.; Li, L. J. Org. Chem. 2003, 69, 8482–8484; (b) Kabalka, G. W.; Tejedor, D.; Li, N.-S.; Malladi, R. R.; Trotman, S. J. Org. Chem. 1998, 63, 6438– 6439; (c) Togni, A.; Pastor, S. D. J. Org. Chem. 1990, 55, 1649–1664.
- 12. (a) Zaugg, H. E. Synthesis 1984, 85–110; (b) Zaugg, H. E. Synthesis 1984, 181–212; (c) Katritzky, A. R.; Fang, Y.; Silina, A. J. Org. Chem. 1999, 64, 7622–7624.
- 13. Sweeny, J. B. In Comprehensive Organic Functional Group Transformations; Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Elsevier Science Ltd: Oxford, 1995; Vol. 2, p 52.
- 14. (a) Yamamoto, Y.; Onuki, S.; Yumoto, M.; Asao, N. J. Am. Chem. Soc. 1994, 116, 421-422; (b) Yamamoto, Y.; Onuki, S.; Yumoto, M.; Asao, N. Heterocycles 1998, 47, 765–780.
- 15. (a) Nakamura, E.; Aoki, S.; Sekiya, K.; Oshino, H.; Kuwajima, I. J. Am. Chem. Soc. 1987, 109, 8056–8066; (b) Sakurai, H.; Sasaki, K.; Hosomi, A. Tetrahedron Lett. 1981, 22, 745–748.
- 16. (a) Zimmerman, H. E.; Traxler, M. D. J. J. Am. Chem. Soc. 1957, 79, 1920–1923; (b) Wessjohann, L.; Wilde, H. Synlett 1997, 731–733.
- 17. Belassoued, M.; Lensen, N.; Bakasse, M.; Mouelhi, S. J. Org. Chem. 1998, 63, 8785–8789.
- 18. (a) Lora-Tamayo, M.; Madronero, R.; Munoz, G. G.; Leipprand, H. Chem. Ber. 1964, 97, 2234–2243; (b) Scheuer, P. J.; Botelho, H. C.; Pauling, C. J. Org. Chem. 1957, 22, 674–676.
- 19. Icrimen, L. I.; Cota, D. K. Org. React. 1969, 17, 213–325.
- 20. A typical procedure for the MCR of 1, 2 and 3 with SiCl_4 / $ZnCl₂$: To a solution of anhydrous $ZnCl₂$ (1.35 g, 10 mmol) in CH_2Cl_2 (20 ml) were added aldehyde (5 mmol), ketone (5 mmol) and nitrile (5 mmol). The reaction mixture was stirred at ambient temperature for 10 min, $SiCl₄$ (2.4 ml, 20 mmol) was added and the reaction mixture was stirred with exclusion of moisture. On completion (TLC monitoring of the progress of the reaction), the mixture was poured onto water (100 ml), extracted with CH_2Cl_2 (2 × 50 ml) and the combined organic extract dried over anhydrous MgSO4, evaporated and the residue chromatographed on silica gel using pet. ether–ethyl acetate (2:1) as eluent to give pure β -amido ketones. Spectral data for representative examples of bamido ketones are listed below.

N-(3-Chromonyl-3-oxo-3-phenylpropyl)-acetamide 5: mp 188–190 °C. $R_f = 0.22$, (pet. ether/AcOEt 1:1); IR (KBr) m 3311, 3078, 2920, 1679, 1643, 1575, 1545, 1465, 1402, 1359, 1319, 1282, 1222, 1161, 1143, 990, 810, 759, 692 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 8.20 (s, 1H), 8.13 (d, $J = 8.2$ Hz, 1H), 7.88 (d, $J = 7.9$ Hz, 2H), 7.64 (t, $J = 7.6$ Hz, 1H), 7.41–7.50 (m, 4H), 7.39 (s, 1H), 7.21 (t, $J = 6.9$ Hz, 1H, NH exchanged with D_2O , 5.52 (q, $J = 4.45$ Hz, 1H), 3.80 (dd, $J = 3.97$, 17.5 Hz, 1H), 3.50 (dd, $J = 3.97$, 17.6 Hz, 1H), 1.96 (s, 3H); ¹³C NMR (75 MHz, CDCl3): d 198.29, 180.13, 169.39, 155.87, 149.23, 136.48, 133.29, 132.19, 129.17, 128.53, 127.09, 124.43, 123.62, 114.54, 113.21, 49.62, 43.31, 23.23; Anal. Calcd for $C_{20}H_{17}NO_4$: C, 71.63; H, 5.11; N, 4.18. Found: C, 71.76; H, 5.07; N, 4.22.

N-[1-(4-Methoxyphenyl)-3-oxo-3-phenylpropyl]-2-pheny*lacetamide* **6b**: mp $131-132$ °C. $R_f = 0.18$, (pet. ether/ AcOEt 2:1); IR (KBr) v 3275 (NH), 3064, 3030, 2926, 1686 (CO), 1646 (CONH), 1613, 1550, 1513, 1450, 1358, 1249, 1200, 1177, 1030, 993, 757, 693 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.83 (d, J = 7.8 Hz, 2H), 7.52 (t, $J = 7.2$ Hz, 1H), 7.42–7.2 (m, 7H), 7.18 (d, $J = 8.7$ Hz, 2H), 6.74 (m, 3H), 5.48 (q, $J = 6.3$ Hz, 1H), 3.7 (s, 3H), 3.62 (dd, $J = 5.5$, 16.6 Hz, 1H), 3.52 (s, 2H), 3.29 (dd, $J = 5.5$, 16.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 198.1, 170.21, 158.61, 136.49. 134.76, 133.24, 132.82, 129.18, 128.76, 128.51, 127.98, 127.48, 127.08, 113.8,55.06, 49.51, 43.62, 43.3; MS $(m/z, \%):$ 373 $(M^+$ 40.8), 374 (M++1, 14), 254 (100), 223 (53), 19 (100); Anal. Calcd for C₂₄H₂₃NO₃: C, 77.19; H, 6.21; N, 3.75. Found: C, 77.12; H, 6.17; N, 3.51.

N-[1-(4-Methylphenyl)-3-oxo-3-phenylpropyl]-benzamide 7b: mp 172–173 °C. $R_f = 0.4$, (pet. ether/AcOEt 2:1); IR (KBr) v 3279 (NH), 3071, 2955, 1683 (CO), 1642 (CONH), 1599, 1578, 1446, 1405, 1359, 1303, 1198, 1264, 1226, 1157, 1083, 983, 800, 761, 650, 600 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.91 (d, J = 7.8 Hz, 2H), 7.80 (d, J = 7.8 Hz, 2H), 7.58 (d, $J = 5.3$, 1H, NH), 7.47 (m, 6H), 7.31 (m, 2H), 7.10 (d, $J = 7.8$ Hz, 2H), 5.73 (q, $J = 5.1$ Hz, 1H), 3.86 (dd, $J = 5.5$, 16.95 Hz, 1H), 3.51 (dd, $J = 5.5$, 16.95 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 198.00, 170.24, 137.73, 136.91, 136.35, 134.76, 133.28, 129.23, 129.17, 128.81, 128.54, 128.01, 127.14, 126.18, 49.73, 43.25, 20.92; Anal. Calcd for C₂₃H₂₁NO₂: C, 80.44; H, 6.16; N, 4.08. Found: C, 80.22; H, 6.02; N, 3.79.

 $N-I1-(4-Methylphenvl)-3-oxo-3-(4-methylphenvl)propvll$ acrylamide 8d: mp 102–103 °C. $R_f = 0.51$, (pet. ether/ AcOEt 1:1); IR (KBr) v 3264 (NH), 3059, 2920, 1680 (CO), 1651 (CONH), 1411, 1360, 1268, 1181, 992, 810, 732 cm⁻¹;
¹H NMR (300 MHz, CDCL); $\frac{5}{7}$ 7.82 (d, $I = 8$ Hz, 2H) 1 ¹H NMR (300 MHz, CDCl₃): δ 7.82 (d, J = 8 Hz, 2H), 7.24 (d, $J = 10$ Hz, 4H), 7.11 (d, $J = 8$ Hz, 2H), 6.82 (d, $J = 6$ Hz, 1H), 6.31 (dd, $J = 5.4$, 16.5 Hz, 1H), 6.11 (m, 1H), 5.61 (m, 2H), 3.77 (dd, $J = 6$, 16 Hz, 1H), 3.42 (dd, $J = 6$, 16 Hz, 1H), 2.42 (s, 3H), 2.31 (s, 3H); ¹³C NMR (75 MHz, CDCl3): d 198.61, 164.13, 144.32, 139.81, 134.13, 133.07, 131.19, 128.20, 128.03, 127.94, 126.87, 126.32, 49.52, 43.08, 21.61, 21.39; Anal. Calcd for $C_{20}H_{21}NO_2$: C, 78.15; H, 6.89; N, 4.56. Found: C, 78.02; H, 7.03; N, 4.33. N-[1-(4-Methylphenyl)-3-oxo-3-(4-methylphenyl)propyl]- 2-carbethoxyacetamide 9c: mp 104–106 °C. $R_f = 0.41$, (pet. ether/AcOEt 2:1); IR (KBr) v 3283 (NH), 3092, 2980, 1745 (COOEt), 1683 (CO), 1650 (CONH), 1608, 1564, 1515, 1409, 1361, 1234, 1151, 1034, 811 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 8.1 (d, $J = 6$ Hz, 1H), 7.87 (d, $J = 7.8$ Hz, 2H), 7.30(d, $J = 7.6$ Hz, 4H), 7.17 (d, $J =$ 7.4 Hz, 2H), 5.62 (q, $J = 6.4$ Hz, 1H), 4.25 (q, $J = 7$ Hz, 2H), 3.75 (dd, $J = 5.2$, 16.4 Hz, 1H), 3.46 (m, 1H), 3.39 (s, 2H), 2.47 (s, 3H), 2.37 (s, 3H), 1.36 (t, $J = 6.8$ Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 198.81, 171.52, 168.10, 141.07, 139.18, 135.17, 133.54, 128.27, 128.13, 128.00, 126.12, 49.36, 43.72, 42.25, 56.31, 21.41, 21.23, 19.42; MS (m/z, %): $367 (M^+, 27)$, $368 (M^+ +1, 8)$, $322 (4)$, $276 (7)$, $253 (19)$, 252 (100), 236 (12), 221 (18), 134 (39), 119 (87); Anal. Calcd for C22H25NO4: C, 71.91; H, 6.86; N, 3.81. Found: C, 71.68; H, 6.77; N, 3.87. 2-[N-Acetylamino(4-methoxyphenyl)methyl]-1-benzosube*rone* 12: mp 166 °C. $R_f = 0.3$, (pet. ether/AcOEt 1:1); IR (KBr) m 3356, 2997, 2933, 2860, 1675, 1606, 1514, 1449, 1371, 1299, 1276, 1244, 1185, 1115, 1031, 980, 843,

582 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.61 (d, $J = 9.3$ Hz, 1H), 7.48 (d, $J = 7.5$ Hz, 1H), 7.34 (t, $J = 7.5$ Hz, 1H), 7.19 (m, 4H), 6.77 (d, $J = 8.4$ Hz, 2H), 5.31 (dd, $J = 3.9$, 9.3 Hz, 1H), 3.50 (m, 1H), 3.76 (s, 3H), 3.00 (m, 2H), 2.20 (m, 1H), 2.06 (s, 3H), 1.90 (m, 2H), 1.60 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 207.18, 169.65, 158.36, 142.68, 139.65, 133.31, 131.41, 130.11, 127.83, 127.64, 126.33, 113.61, 55.07, 53.77, 53.58, 33.83, 29.07, 25.30, 23.44; Anal. Calcd for $C_{21}H_{23}NO_3$: C, 74.75; H, 6.87; N, 4.15. Found: C, 74.38; H, 7.10; N, 4.09.